GENERIC KEY AND SYNOPSES FOR FREE-LIVING LARVAE AND TADPOLES OF MEXICAN AMPHIBIANS
 RONALD ALTIG
 Department of Zoology, Mississippi State University, State College, Mississippi 39762
 and
 RONALD A. BRANDON
 Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901

Abstract

A key to the genera of free-living larvae and tadpoles of Mexican amphibians, accompanied by generic synopses and a bibliography, is presented. The salamander key applies to posthatching specimens with front digits fully formed (ca. 20 mm snoutvent length), while the tadpole key applies to premetamorphic and prometamorphic specimens.

Knowledge of Mexican amphibians has increased rapidly during the last 20 years. Although comprehensive reviews can now be made of some groups (e.g., Tihen, 1958; Duellman, 1963; Duellman and Trueb, 1966), investigation of larval forms has lagged. Once larval taxonomy is stabilized, ecological and behavioral studies of the immature forms can be undertaken. The present key and synopses summarize the characteristics of the genera of free-living larval amphibians of Mexico. Data from the literature are combined with new information. Explanation of new terminology and pertinent figures appear in Altig (1970).

Free-living larval salamanders of 19 species in 4 genera and 3 families inhabit Mexico. At least two species, Siren intermedia and Ambystoma dumerilii, are paedogenetic. In several species of Ambystoma and Rbyacosiredon, some or all specimens in some populations breed while retaining larval form and external gills; Ambystoma mexicanum usually does. Life histories of many other species are poorly known. Although Taricha is unknown in Mexico, it is included here because T. torosa possibly occurs in Baja California.

Species of Bolitoglossa, Cbiropterotriton, Lineatriton, Parvimolge, Pseudoeurycea, and Thorius (Family Plethodontidae), comprising over two-thirds of the Mexican salamander fauna, have terrestrial eggs and direct development; gills and other larval features are lost before hatching.

Free-living tadpoles of 127 species in 21 genera and 8 families inhabit Mexico. Over half of the species are hylids, with the majority of the remainder being bufonids and ranids. All the eggs are aquatic, except for those of Pachymedusa, Agalychnis, Centrolenella, and Leptodactylus. The first three lay arboreal eggs and the latter lays eggs in a foam nest in a terrestrial burrow; Pbysalaemus has a floating foam nest. Due to the incomplete data on tadpoles, future revision of some couplets is inevitable. About 78% of the tadpoles have some descriptive data available. Rana, Bufo, and certain groups of hylids need special attention. Species of Eleutherodactylus, Hylactopbryne, Syrrbophus, and Tomodactylus (Family Leptodactylidae) have terrestrial eggs, direct development, and lack a free-living tadpole.

Key

1. Salamander larva or paedogenetic or neotenic adult; external gills present; body form similar to transformed adult
Anuran tadpole; external gills absent; body globular
2. Costal grooves absent

Notopbthalmus
(east coast), Taricha (west coast)
Costal grooves present

Editorial Committee for this Paper:
Kenneth L. Gosner, Curator of Zoology, The Newark Museum, 43-49 Washington Street, Newark, New Jersey

Dr. Priscilla Starrett, Lecturer, Department of Biological Sciences, University of Southern California, Los Angeles, California
3. Fewer than 20 costal grooves 4

More than 28 costal grooves .-...Siren
4. Pond-type larva with tail fin extending as far as front legs to form dorsal body fin, reduced to low ridge in some paedogenetic or neotenic adults Ambystoma
Stream-type larva with tail fin
terminating at level of hind
limbs, although a low ridge may extend one-half the distance to the head

Rbyacosiredon
5. Oral disc and labial teeth absent ---- 6

Oral disc and labial teeth present 9
6. Jaws without keratinized sheaths; spiracle single (ventromedial) or dual (lateral) ; body depressed
Jaws with keratinized sheaths; spiracle single and sinistral; body globular Hyla (part)
7. Spiracles dual and lateral; oral barbels present \qquad Rbinopbrynus
Spiracle single and ventromedial; oral barbels absent8
8. Margins of labial flaps smooth; medial borders of labial flaps parallel or divergent Gastropbryne
Margins of labial flaps scalloped or papillate; medial borders of labial flaps convergent ----.----- Hypopacbus
9. Anus medial 10
Anus dextral -----------------...........-- 16
10. Tooth row formula $2 / 4$ or larger; papillary border with a narrow ($<1 / 2$ jaw length) dorsal gap or complete; oral disc not emarginate; spiracle well below longitudinal axis
Tooth row formula $2 / 3$; papillary border with a wide (\simeq upper jaw length) dorsal gap or with both dorsal and ventral gaps; oral disc emarginate or not; spiracle at or near longitudinal axis
11. Eyes lateral; body globular; A-1 long and with a median gap Phrynobyas
Eyes dorsal; body depressed; A-1 short and without a median gap
12. Jaws narrow to medium; jaws never cuspate; lower jaw striated; keratinized area on roof of mouth absent; dorsum usually dark
brown to black; to 35 mm total length Scaphiopus
Jaws wide; jaws frequently cuspate; lower jaw not striated; frequently a small keratinized area on roof of mouth; dorsum typically lightly pigmented; to 75 mm total lengthSpea
13. Papillary border with a dorsal gap 14

Papillary border with dorsal and ventral gaps; oral disc emarginate (part)
14. Oral disc distinctly emarginate Bufo (part)
Oral disc not emarginate, or with a slight lateral indentation
7 15. Darkly pigmented; eyes appear oval to round in dorsal view; dorsal fin terminates at body; inhabits lentic water Leptodactylus
Lightly pigmented; eyes appear Cshaped in dorsal view; dorsal fin terminates on tail musculature; inhabits lotic water Centrolenella
16. Papillary border complete or with a dorsal gap17

Papillary border with dorsal and ventral gaps ... Bufo (part)
17. Oral disc emarginate; papillary border with a dorsal gap; eyes dorsal 18
Oral disc not emarginate; papillary border complete or with a dorsal gap; eyes dorsal or lateral
18. Labial tooth row formula 33 or larger .-.............. Rana (part)
Labial tooth row formula $2 / 3$ or smaller
19. Total length 35 mm or less; central Veracruz and eastern Oaxaca Rana (part), Pbysalaemus
Total length over 35 mm ; widespread

Rana (part)
20. Papillary border complete- 21

Papillary border with a dorsal gap 26
21. Tooth row formula larger than 2 ; gut coiled

Tooth row formula 2 2; gut not
coiled

Anotheca
22. Two rows of labial teeth on anterior labium

23
More than two rows of labial teeth
on anterior labium
23. Three rows of labial teeth on posterior labium

More than three rows of labial teeth on posterior labium
Hyla (part)
24. Upper jaw cuspate .. Plectrohyla (part)

Upper jaw not cuspate
----- Hyla (part), Plectrobyla (part)
25. Three or four rows of labial teeth on anterior labium Ptychobyla
More than four rows of labial teeth on anterior labium Hyla (part)
26. Tooth row formula $2 / 3$ or less 27
Tooth row formula larger than $2 / 3$
27. Tooth row formula $2 / 2$; medial wall of spiracular tube almost entirely free from body; northeastern region

Acris
Tooth row formula $2 / 3$; medial wall of spiracular tube attached to body
28. Spiracle at or near longitudinal axis, definitely sinistral
Spiracle well below longitudinal axis, nearly ventromedial Agalychnis (east coast), Pachymedusa (west coast)
29. Eyes lateral 30
Eyes dorsal .------------.-. Hyla (part)
30. P-3. 75 or more times P-1

P-3.70 or less times P-1
Hyla (part), Pseudacris
31. Marginal papillae uniserial below P-3
Marginal papillae biserial below P-3
32. Upper jaw with short lateral processes; P-3 longer than upper jaw; tail fin extends to level of spiracle; Yucatan Peninsula plus semiarid areas of coastal Sinaloa and Oaxaca

Triprion
Upper jaw with long lateral processes; P-3 subequal to upper jaw; tail fin not extending onto body; wet forest of Atlantic drainage from northern Oaxaca to Chiapas Smilisca (part)
33. Upper jaw with long lateral processes; widespread in lowlands Smilisca (part)
Upper jaw with short lateral processes; arid coastal areas from Sonora to Michoacan

Pternobyla

Generic Synopses

Siren.-Three gill slits; medial gill rami branched with fimbriae arising from branches; hind legs never present; dorsal fin extends to level of front legs in young or terminates near cloaca on paedogenetic adults; 30-40 costal grooves between front legs and cloacal aperture; margins of jaws lack teeth but bear keratinized sheaths; known in Mexico from northern Tamaulipas; 1 species.

Notopbthalmus and Taricha.-Four gill slits; gill rami not branched; feet without keel on trailing edge or webbing between digits; hind legs present from early stages; dorsal fin extends to level of front legs; Notophthalmus in Gulf Coastal Plain from southern Texas to northern Puebla and Veracruz; 1 species; Taricha torosa may occur in northwestern Baja California.

Ambystoma.-Four gill slits; gill rami not branched; feet without keel on trailing edge; hind legs present from early stages; $11-15$ costal grooves (counting one in each axilla and groin); dorsal fin extends to level of front legs or reduced in neotenic and paedogenetic adults to a low ridge; widespread from southern edge of Mexican Plateau northward; 13 species. Although A. dumerilii, endemic to Lake Patzcuaro, Michoacan, was long placed in a separate genus (Bathysiredon), it is considered by Tihen (1958, 1969) to be an Ambystoma.

Rbyacosiredon.-Four gill slits; gill rami not branched; hind limbs present from early stages; digits long and flattened; a distinct keel on trailing edge of feet; 11-13 costal grooves; dorsal fin reduced, reaching at most only half the distance to the head; mountain streams at southern edge of Mexican Plateau from Michoacan-Mexico border to the Puebla-Mexico border and south to northern Morelos; 4 species.

Rbinopbrynus.-Oral disc and labial teeth absent; jaws without keratinized sheaths; anus medial; eyes lateral; body depressed; spiracles dual and lateral oral barbels present; upper lip without a median notch; external nares present; lowlands from Texas to Oaxaca; 1 species.

Gastrophryne.-Oral disc and labial teeth absenr; jaws without keratinized sheaths; anus medial; eyes lateral; body depressed; spiracle single and medioventral; oral barbels
absent; labial flaps without papillae and with medial margins parallel or divergent; external nares absent until late in development; widespread in lowlands; 3 species.

Hypopachus.-Oral disc and labial teeth absent; jaws without keratinized sheaths; anus medial; eyes lateral; body depressed; spiracle single and medioventral; oral barbels absent; labial flaps scalloped or papillate and with medial margins convergent; external nares absent until late in development; widespread in lowlands; 1 species.

Scaphiopus.-Oral disc present and not emarginate; jaws thin to medium with keratinized sheaths; jaws never cuspate; lower jaw striated; keratinized area on roof of mouth absent; anus medial; eyes dorsal; body slightly depressed to globular; spiracle single, sinistral, but below longitudinal axis; labial tooth row formula 2-6(2-6)/3-6(1-3); papillary border complete or with a narrow dorsal gap; darkly pigmented; northern deserts; 1 species.

Sped.-Oral disc present and not emarginate; jaws medium to wide with keratinized sheaths; jaws often cuspate; lower jaw not striated; keratinized area on roof of mouth often present; anus medial; eyes dorsal; body depressed; spiracle single, sinistral, but below longitudinal axis; labial tooth row formula 2-6(3-6)/4-6(2-6); papillary border complete or with a narrow dorsal gap; often lightly pigmented; to southern edge of Mexican Plateau; 3 species.

Bufo.-Oral disc present and emarginate; jaws thin to medium with keratinized sheaths; anus medial or dextral; eyes dorsal; body globular to slightly depressed; labial tooth row formula $2(2) / 2-3[1]$; papillary border with anterior and posterior gaps; typically darkly pigmented; spiracle single and sinistral, at or near longitudinal axis; widespread; 25 species.

Pbysalaemus.-Oral disc present and emarginate; jaws medium with keratinized sheaths; anus dextral; eyes dorsal; body globular; labial tooth row formula $2(2) / 3$; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral, and near longitudinal axis; central Veracruz through southern Oaxaca; 1 species.

Leptodactylus.-Oral disc present and not emarginate; jaws thin to moderate with keratinized sheaths; anus medial; eyes dorsal;
body globular; labial tooth row formula $2[2] / 3$; papillary border with a wide anterior gap; darkly pigmented; spiracle single, sinistral and near longitudinal axis; widespread in lowlands; 3 species.

Centrolenelld.-Oral disc present and not emarginate; jaws thin to medium with keratinized sheaths; anus medial; eyes dorsal and appear C-shaped in dorsal view; body depressed; labial tooth row formula $2(2) / 3$; papillary border with an anterior gap; lightly pigmented; spiracle single, sinistral and near longitudinal axis; inhabits mountain streams; eastern and southern areas; 1 species.

Rana.-Oral disc present and emarginate; jaws thin to wide with keratinized sheaths; anus dextral; eyes dorsal; body globular to slightly depressed; spiracle single, sinistral and at or near longitudinal axis; labial tooth row formula 1-7(2-7)/2-6[1], commonly $2(2) / 3[1]$; papillary border with an anterior gap; darkly pigmented; widespread; 15 species.

Acris.-Oral disc present and not emarginate; jaws medium with keratinized sheaths; anus dextral; eyes dorsolateral to dorsal; body slightly depressed; labial tooth row formula 2 (2)/2; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and near longitudinal axis; tail tip often black and tail musculature often banded dorsally; northeastern area; 1 species.

Agalychnis and Pachymedusa.-Oral disc present and slightly emarginate; jaws medium with keratinized sheaths; anus dextral; eyes dorsal; body globular; labial tooth row formula 2(2)/3; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and far below longitudinal axis; widespread in lowlands; 2 and 1 species.

Anotheca.-Oral disc present and not emarginate; jaws medium with keratinized sheaths; anus dextral; eyes dorsal; body globular; labial tooth row formula $2(2) / 2$; papillary border complete; darkly pigmented; spiracle single, sinistral and near longitudinal axis; gut not coiled; Veracruz; 1 species.

Hyla and Pseudacris.-Oral disc present [The H. microcepbala group, including four species, (Duellman and Fouquette, 1968) lacks labial teeth, keratinized jaw sheaths, and all or most of the oral disc.] and not emarginate; jaws thin to wide with keratinized sheaths; anus dextral (median in leu-
cophyllata group); eyes dorsal or lateral; body globular to depressed; labial tooth row formula $2-7(2,7) / 3-10[1]$, commonly $2(2) /$ 3 ; papillary border complete or with an anterior gap; darkly or lightly pigmented; spiracle single, sinistral and near longitudinal axis; inhabits lentic and lotic water; widespread; 47 species and 1 species.

Phrynobyas.-Oral disc present and not emarginate; jaws medium with keratinized sheaths; anus median; eyes lateral; body globular; labial tooth row formula $4(1-2,4)$ / 4 (1); papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and near longitudinal axis; widespread; 1 species.

Plectrobyla.-Oral disc present and not emarginate; jaws medium to wide with keratinized sheaths; jaws often cuspate; anus dextral; eyes dorsal; body somewhat depressed; labial tooth row formula 2/3[1]; papillary border complete; darkly pigmented; inhabits mountain streams in southern areas; 5 species.

Pternobyla.-Oral disc present and not emarginate; jaws medium to wide with keratinized sheaths; anus dextral; eyes lateral; body globular; labial tooth row formula $2(2) / 3$; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and near longitudinal axis; northwestern area; 2 species.

Ptychobyla.-Oral disc present and not emarginate; jaws medium to wide with keratinized sheaths; anus dextral; eyes dorsal; body globular; labial tooth row formula $4(1) / 6-7(1)$ or $3(1,3) / 3(1)$; papillary border complete; darkly pigmented; spiracle single, sinistral and near longitudinal axis; widespread in mountain streams of southern half of country; 4 species.

Smilisca.-Oral disc present and not emarginate; jaws medium with keratinized sheaths; anus dextral; eyes dorsal; body globular; labial tooth row formula $2(2) / 3$; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and near longitudinal axis; widespread; 2 species.

Triprion.-Oral disc present and not emarginate; jaws medium with keratinized sheaths; anus dextral; eyes lateral; body globular; labial tooth row formula $2(2) / 3$; papillary border with an anterior gap; darkly pigmented; spiracle single, sinistral and near
longitudinal axis; Yucatan Peninsula plus semiarid coastal regions of Sinaloa to Oaxaca; 3 species.

Bibliography

Altig, R. 1970. A key to the tadpoles in the continental United States and Canada. Herpetologica 26:180-207.
Anderson, J. D. 1961. The life history and systematics of Ambystoma rosaceum. Copeia 1961:371-377.
Bishop, S. C. 1941. The salamanders of New York. New York State Mus. Bull. 324:1-365. - 1943. Handbook of salamanders. Comstock Publ. Co., Ithaca.
Campbell, H. W., and R. S. Simmons. 1962. Notes on the eggs and larvae of Rhyacosiredon altamirani (Duges). Herpetologica 18: 131-133.
Darling, D. M., and H. M. Smith. 1954. A collection of reptiles and amphibians from eastern Mexico. Trans. Kansas Acad. Sci. 57: 180-195.
Duellatan, W. E. 1961. The amphibians and reptiles of Michoacan, Mexico. Univ, Kansas Publ. Mus. Natur. Hist. 15:1-148.
1963. A review of the middle American tree frogs of the genus Ptychohyla. Univ. Kansas Publ. Mus. Natur. Hist. 15:297-349. -. 1965. Frogs of the Hyla taeniopus group. Copeia 1965:159-168.
1970. The hylid frogs of Middle America. Monog. Mus. Nat. Hist. Univ, Kansas. 1. 753 p .
Duellian, IV. E., and M. J. Fouquette, Jr. 1968. Middle American frogs of the Hyla microcephala group. Univ. Kansas Publ. Mus. Natur. Hist. 17:517-557.
Duellafan, W. E., and L. T. Klaas. 1964. The biology of the hylid frog Triprion petasatus. Copeia 1964:308-321.
Duellalan, W. E., and Linda Trueb. 1966. Neotropical hylid frogs, genus Smilisca. Univ. Kansas Publ. Mus. Natur. Hist. 17:281-375.
Gaudin, A. J. 1965. Latival development of the tree frogs Hyla regilla and Hyla californiae. Herpetologica 21:117-130.
Gehlbach, F. R. 1967. Ambystoma tigrinum. Cat. Amer. Amphib. Rept. 52.1-52.4.
Hartweg, N. 1941. Notes on the genus Plectrohyla, with descriptions of new species. Occ. Pap. Mus. Zool. Univ. Michigan (437): 1-10.
Habtiveg, N., and Grace L. Orton. 1941. Notes on tadpoles of the genus Plectrohyla. Occ. Pap. Mus. Zool. Univ. Michigan (438): 1-6.
Heyer, IV. R. 1969. Studies of the genus Leptodactylus (Amphibia, Leptodactylidae) III. A redefinition of the genus Leptodactylus and a description of a new genus of leptodactylid frogs. Los Angeles Co. Mus. Contr. Sci. (155):1-14.

Limbaugh, B. A., and E. P. Volpe. 1957. Early development of the Gulf Coast toad, Bufo valliceps Weigmann. Amer. Mus. Novitates (1842):1-32.

Maslin, T. P. 1963. Notes on some anuran tadpoles from Yucatan, Mexico. Herpetologica 19: 122-128.
Mechait, J. S. 1968. Notophthalmus meridionalis. Cat. Amer. Amphib. Rept. 74.1-74.2.
Mulaik. S. 1937. Notes on Leptodactylus labialis. Copeia 1937:72-73.
Noble, G. K., and B. C. Marshall. 1932. The validity of Siren intermedia LeConte, with observations on its life history. Amer. Mus. Novitates (532):1-17.
Orton, Grace L. 1943. The tadpole of Rhinophrymus dorsalis. Occ. Pap. Mus. Zool. Univ. Michigan (472):1-7.

- 1951. The tadpoles of Leptodactylus melanonotus (Hallowell). Copeia 1951:6266.

Pyburn, W. F. 1963. Observations on the life history of the treefrog, Phyllomedusa callidryas (Cope). Texas J. Sci. 15:155-170. 1967. Breeding and larval development of the hylid Phrynohyas spilomma in southern Veracruz, Mexico. Herpetologica 23: 184-194.
Rabb, G. B., and J. E. Mosmann. 19.55. The tadpole of Hyla robertsorum, with comments on the affinities of the species. Occ. Pap. Mus. Zool. Univ. Michigan (563):1-9.
Robinson, D. C. 1961. The identity of tadpoles of Anotheca coronata (Stejneger). Copeia 1961:495.
Savage, J. M. 1960. Geographic variation in the tadpole of the toad Bufo marinus. Copeia 1960:233-235.
Shannon, F. A., and J. E. Werler. 1955. Notes on amphibians of the Los Tuxtlas Range of Veracruz, Mexico. Trans. Kansas Acad. Sci. 58(3):360-386.
Sauth, H. M. 1946. The tadpoles of Bufo cognatus Say. Univ. Kansas Publ. Mus. Natur. Hist. 1:93-96.
Smith, H. M., and E. H. Taylor. 1948. An annotated checklist and key to the Amphibia of Mexico. Bull. U. S. Nat. Mus. 194:1-118.
Starrett, Priscilla. 1960. Descriptions of tadpoles of middle American frogs. Mise. Publ. Mus. Zool. Univ. Michigan (110):1-37.
Stebbins, R. C. 1951. Amphibians of western North America. Univ. California Press, Berkeley.
1966. A field guide to western reptiles and amphibians. Houghton Mifflin Co., Boston.
Stuart, L. C. 1942. Descriptions of two new species of Plectrohyla Brocchi with comments on several forms of tadpoles. Occ. Pap. Mus. Zool. Univ. Michigan (455):1-14.
——. 1948. The amphibians and reptiles of Alta Verapaz, Guatemala. Misc. Publ. Mus. Zool. Univ. Michigan (69):1-109.
Taylor, E. H. 1940. New salamanders from Mexico with a discussion of certain known forms. Univ. Kansas Sci. Bull. 26:407-439.

- 1941. Two new ambystomid salamanders from Chihuahua. Copeia 1941:143146.

1942. Tadpoles of Mexican Anura. Univ. Kansas Sci. Bull. 28:37-53.

- 1943. A new ambystomid salamander adapted to brackish water. Copeia 1943: 151-156
-1 1944. A new ambystomid salamander from the Plateau Region of Mexico. Univ. K'ansas Sci. Bull. 30:57-61.
- 1954. Frog-egg-eating tadpoles of Anotheca coronata (Stcjneger) (Salientia, Hylidae). Univ, Kansas Sci. Bull. 36:589-595.
Taylor, E. H., and H. M. Smith. 1945. Summary of the collections of amphibians made in Mexico under the Walter Rathbone Bacon Traveling Scholarship. Proc. U. S. Nat. Mus. 95(3185):521-613.
Tihes, J. A. 1958. Comments on the osteology and phylogeny of ambystomid salamanders. Bull. Florida State Mus. 3:1-50.
- 1969. Ambystoma. Cat. Amer. Amphib. Rept. 75.1-75.4.
Valentine, B. D. 1964. A preliminary key to the families of salamanders and sirenids with gills or gill slits. Copeia 1964:582-583.
Valentine, B. D., and D. M. Denvis. 1964. A comparison of the gill-arch system and fins of three genera of larval salamanders, Rhyacotriton, Gyrinophilus, and Ambystoma. Copeia 1964:196-201.
Volpe, E. P., and S. M. Harvey. 1958. Hybridization and larval development in Rama palmipes Spix. Copeia 1958:197-207.
Wевв, R. G. 1963. The larva of the casqueheaded frog, Pternohyla fodiens. Texas J. Sci. 15:89-97.
Zweifel, R. G. 1958. Ecology, distribution, and systematics of the frogs of the Rana boylei group. Univ. California Publ. Zool. 54: 207-276.
- 1961. Larval development of the tree frogs Hyla arenicolor and Myla wrightorum. Amer. Mus. Novitates (2056):1-19.

1970. Descriptive notes on larvae of toads of the debilis group, genus Bufo. Amer. Mus. Novitates (2407):1-13.

April 14, 1971

